Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.

نویسندگان

  • K P Scholz
  • R J Miller
چکیده

Excitatory synaptic transmission in the hippocampus involves the participation of at least two types of presynaptic Ca2+ channels, N-type channels sensitive to omega-conotoxin GVIA (omega-CTx GVIA) and Q-type channels sensitive to omega-agatoxin IVA (omega-Aga IVA). Hippocampal pyramidal neurons in cell culture were used to examine the participation of these two classes of channels at different stages of synapse development. Specific Ca2+ channel toxins were used to block presynaptic Ca2+ channels while whole-cell voltage-clamp recordings were used to record evoked EPSCs in postsynaptic neurons. At immature synapses (cells in culture for 10-15 d), omega-CTx GVIA (1-5 microM) blocked transmission by more than 80% while omega-Aga IVA (1 microM) was less effective. In older cultures, however, omega-Aga IVA (1 microM) was more effective than omega-CTx GVIA (1-5 microM) in blocking synaptic transmission. The pharmacological properties of the omega-Aga IVA sensitive component of synaptic transmission were examined in more detail using omega-Aga IVA and omega-conotoxin MVIIC (omega-CTx MVIIC). The properties of this component of transmitter release indicated that a Q-type Ca2+ channel was involved in presynaptic Ca2+ entry. The results suggest that different classes of presynaptic Ca2+ channels begin to participate in transmitter release at different times during synapse development and maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Effects of Propofol on Glutamate-Induced Calcium Mobilization in Presynaptic Boutons of Rat Hippocampal Neurons

Recent reports have suggested that various general anesthetics affect presynaptic processes in the central nervous system. However, characterizations of the influence of intravenous anesthetics on neurotransmitter release from presynaptic nerve terminals (boutons) are insufficient. Because the presynaptic calcium concentration ([Ca2+]pre) regulates neurotransmitter release, we investigate the e...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 1995